Nanoscience and Nanotechnology
Introduction to Nanoelectronics
Nanomaterials
NANO TECHNOLOGY: BASIC CALCULATIONS FOR ENGINEERS AND SCIENTISTS
Nanoscience and Nanotechnology
Commercializing Nanotechnology
Sustainable Nanotechnology for Environmental Remediation
Engineering—An Endless Frontier
Nanomaterials and Their Applications
Nanotechnology Commercialization
Biomaterials and Nanotechnology
Nanotechnology and Tissue Engineering
Nanotechnology in Industrial Wastewater Treatment
Foundations of Nanotechnology - Three Volume Set
Applying Nanotechnology to the Desulfurization Process in Petroleum Engineering
Chemistry in Motion
Environmental Nanotechnology: Applications and Impacts of Nanomaterials
Chemical Engineering
Handbook of Nanotechnology Applications
Nanotechnology for the Energy Challenge
Nanotechnology and Energy
Polymer Science and Nanotechnology
Nano-food Engineering
Nanotechnology and Functional Materials for Engineers
Particle Level Chemical Engineering CAD Using Arno Vigen Scrunched Cube (AVSC)
An Introduction to Green Nanotechnology
Nanoscience and Nanotechnology
Handbook of Research on Diverse Applications of Nanotechnology in Biomedicine, Chemistry, and Engineering
Nanotechnology Applications in Environmental Engineering
NanoScience Nanomaterial, Nanotechnology and Applications

Showcasing a selection of new research on nanotechnological applications for environmental protection along with new advanced technologies in nanochemistry, this volume presents an interdisciplinary approach that brings together materials science, chemistry, and nanotechnology. Part I of the volume looks at environmental topics that include an exploration of the challenges of the global water crisis and new technology in nanofiltration and water purification. It provides an informative overview of green nanotechnology, green nanomaterials, and green chemistry. Some of the advanced technologies discussed in Part II include the application of quantum dots, a nanochemical approach to using ICT technology, and new research on polymer nanocomposites as a smart material along with its synthesis, preparation, and properties. Other important topics are included as well.

Introduction to Nanoelectronics

Explore the Properties of Today’s Widely Used Nanomaterials— and Assess Their Potentially Harmful Effects on the Environment
Environmental Nanotechnology is the first book to assist you in both understanding the properties of new nanomaterial-centered technology and assessing the potentially harmful effects these materials may have on the environment. Written by a team of 29 leading experts from around the world, this comprehensive book presents cutting-edge coverage of the fabrication, characterization, and measurement of nanomaterials...emerging markets for nanomaterials...nanotechnologies in the energy industry...nanotechnologies for environmental quality...nanotechnology transport and fate in the environment...toxicological impacts of nanomaterials...and much more. Filled with detailed illustrations, Environmental Nanotechnology features: State-of-the-art techniques for the characterization and measurement of nanomaterials The latest findings in the transport and fate of nanomaterials in the environment Nanotechnologies for energy production, storage, and distribution In-depth analyses of the ecotoxicological impacts of nanomaterials New methods for developing nanomaterials with less environmental risk Inside This Landmark Environmental Engineering Guide • Nanomaterials: New Challenges and Opportunities • Fabrication of Nanomaterials • Characterization and Measurement of Nanomaterials • Emerging Markets for Nanomaterials • Nanomaterial-Enabled Technologies for Energy Production, Storage, and Distribution • Nanomaterial-Enabled Technologies for Environmental Quality • Nanomaterial Transport and Fate in the Environment • Ecotoxicological Impacts of Nanomaterials • Toxicological Impacts of Nanomaterials

Nanomaterials
NANOTECHNOLOGY: BASIC CALCULATIONS FOR ENGINEERS AND SCIENTISTS

Commercializing Nanotechnology: A Roadmap to Taking Nanoproducts from Laboratory to Market provides a step-by-step roadmap for taking the results of laboratory research on nanotechnology and nanomaterials and developing them into successful and profitable commercial ventures. It details the methodology, techniques, and pathways for technology-readiness assessment, testing protocols, and commercialization, and it discusses manufacturing techniques, including their limitations and challenges. Provides methodology, techniques, and pathways for technology-readiness assessment, testing protocols, and commercialization Offers general direction and assistance to researchers Describes manufacturing techniques, including their limitations and challenges Discusses intellectual property protection Provides details on market opportunities This book is aimed at scientists and engineers, including chemists, physicists, economists, medical practitioners, managers, marketers, traders, investors, and entrepreneurs in the fields of nanoscience, nanomedicine, nanotechnology, and nanomanufacturing.

Chemical Nanoscience and Nanotechnology

A fascinating and informative look at state-of-the-art nanotechnology research, worldwide, and its vast commercial potential Nanotechnology Commercialization: Manufacturing Processes and Products presents a detailed look at the state of the art in nanotechnology and explores key issues that must still be addressed in order to successfully commercialize that vital technology. Written by a team of distinguished experts in the field, it covers a range of applications notably: military, space, and commercial transport applications, as well as applications for missiles, aircraft, aerospace, and commercial transport systems. The drive to advance the frontiers of nanotechnology has become a major global initiative with profound economic, military, and environmental implications. Nanotechnology has tremendous commercial and economic implications with a projected $1.2 trillion-dollar global market. This book describes current research in the field and details its commercial potential—from work bench to market. Examines the state of the art in nanotechnology and explores key issues surrounding its commercialization Takes a real-world approach, with chapters written from a practical viewpoint, detailing the latest research and considering its potential commercial and defense applications Presents the current research and proposed applications of nanotechnology in such a way as to stimulate further research and development of new applications Written by an all-star team of experts, including pioneer patent-holders and award-winning researchers in nanotechnology The major challenge currently faced by researchers in nanotechnology is successfully transitioning laboratory research into viable commercial products for the 21st century. Written for professionals across an array of research and engineering disciplines, Nanotechnology Commercialization: Manufacturing Processes and Products does much to help them bridge the gap between lab and marketplace.

Commercializing Nanotechnology

Polymer Science and Nanotechnology: Fundamentals and Applications brings together the latest advances in polymer science and nanoscience. Sections explain the fundamentals of polymer science, including key aspects and methods in terms of molecular structure, synthesis, characterization, microstructure, phase structure and processing and properties before discussing the materials of particular interest and utility for novel applications, such as hydrogels, natural polymers, smart polymers and polymeric biomaterials. The second part of the book examines essential techniques in nanotechnology, with an emphasis on the utilization of advanced polymeric materials in the context of nanoscience. Throughout the book, chapters are prepared so that materials and products can be geared towards specific applications. Two chapters cover, in detail, major application areas, including fuel and solar cells, tissue engineering, drug and gene delivery, membranes, water treatment and oil recovery. Presents the latest applications of polymers and polymeric nanomaterials, across energy, biomedical, pharmaceutical, and environmental fields Contains detailed coverage of polymer nanocomposites, polymer nanoparticles, and hybrid polymer-metallic nanoparticles Supports an interdisciplinary approach, enabling readers from different disciplines to understand polymer science and nanotechnology and the interface between them

Sustainable Nanotechnology for Environmental Remediation

Nanotechnology combines solid state physics, chemistry, electrical engineering, chemical engineering, biochemistry and biophysics, and materials science. It is a highly interdisciplinary area,
meaning that it involves ideas integrated from many traditional discipline. Quantum nanoscience is the application of quantum theory to the design of new nanoscale materials and devices. Quantum Nanoscience explains functionality and structure in natural or engineered nanoscale systems through quantum mechanisms such as discretisation, superposition and entanglement. In the 19th century, decades of practice with heat engines led to the new science of thermodynamics. The understanding of the world captured by thermodynamics is now part of the fabric of engineering and effective design across a vast range of different technologies. Thermodynamics, quantum nanoscience is an enabling science for engineering and design of new nanotechnologies. Molecular nanotechnology (MNT) is a technology based on the ability to build structures to complex, atomic specifications by means of mechanosynthesis. This is distinct from nanoscale materials. Based on Richard Feynman's vision of miniature factories using nanomachines to build complex products (including additional nanomachines), this advanced form of nanotechnology (or molecular manufacturing) would make use of positionally-controlled mechanosynthesis guided by molecular machine systems. MNT would involve combining physical principles demonstrated by chemistry, other nanotechnologies, and the molecular machinery of life with the systems engineering principles found in modern macroscale factories. This book introduces the reader to the world of nanotechnology by giving them in-depth details of different aspects of the field.

Engineering—An Endless Frontier

This volume brings together innovative research, new concepts, and novel developments in the application of new tools for chemical engineers. It presents significant research, reporting on new methodologies and important applications in the field of chemical engineering. Highlighting theoretical foundations, real-world cases, and future directions, this book covers selected topics in a variety of areas, including: chemoinformatics and computational chemistry advanced dielectric materials nanotechniques polymer composites It also presents several advanced case studies. The topics discussed in this volume will be valuable for researchers, practitioners, professionals, and students of chemistry material and chemical engineering.

Nanomaterials and Their Applications

As regulations push the fossil fuel industry toward increasing standards of eco-friendliness and environmental sustainability, desulfurization (the removal of SO2 from industrial waste byproducts) presents a new and unique challenge that current technology is not equipped to address. Advances in nanotechnology offer exciting new opportunities poised to revolutionize desulfurization processes. Applying Nanotechnology to the Desulfurization Process in Petroleum Engineering explores recent developments in the field, including the use of nanomaterials for biodesulfurization and hydodesulfurization. The timely research presented in this volume targets an audience of engineers, researchers, educators as well as students at the undergraduate and post-graduate levels.

Nanotechnology Commercialization

Market_Desc: · Practicing engineers and scientists in industrial and environmental fields · Graduate students in chemical and environmental engineering -- including risk assessment and policy courses · Members of: American Institute of Chemical Engineers (AIChE), Air & Waste Management Association (A&WMA), American Chemical Society (ACS), American Society of Mechanical Engineers, American Academy of Environmental Engineers · Readers of: Chemical Engineering Progress (AIChE magazine), Environmental Management (A&WMA), Chemical Engineering News (ACS)

Special Features: · Develops an understanding of nanotechnology for practicing engineers and scientists in environmental and industrial fields · Provides an overview using illustrative example problems and solutions that are arranged as an orderly and logical progression, but they can also stand on their own · Focuses on problems, which are often the best way to learn a subject · Addresses the needs of both the environmental engineer/scientist in industry and students in environmental studies · Bridges the gap between the developing industry of nanomanufacturing and the existing understanding of environmental issues · Serves as both a text for students and a reference for those already in industry · According to Howard Beim, a chemistry professor at the US Merchant Marine Academy: This is certain to become the pace setter in the field, a text to benefit both students of all technical disciplines and practicing engineers and researchers. · According to John McKenna, President and CEO of ETS, Inc.: Dr. Theodore has covered most of the important nanotechnology subject matter in this proposed work though simple, easy to follow problems. · According to Rita D'Aquino, Senior Editor of Chemical Engineering Progress: this superb basic calculations workbook is practical, informative, and forward-looking. This book applies theoretical, complex, non-traditional or otherwise abstract technical concepts to real-world industrial dilemmas, and design[s] practical solutions -- essentially methodologies -- that can be adapted to solve other problems. · According to Peter T. Belmonte, Director of Environmental Engineering for SUEZ Energy Generation: At a minimum
this book is a must for management personnel and decision makers. Non-management personnel will also find this book useful to stay ahead in industry. Engineers of any discipline will find this book extremely useful. About The Book: This book contains almost 200 solved problems relating to nanotechnology. These problems are divided in four sections: Chemistry Fundamentals and Principles, Particle Technology, Applications, and Environmental Concerns. In addition to the solved examples, each section contains overview coverage of the subject matter. A key feature of the book is that the solutions can be presented in a stand-alone manner, and the problems are laid out to develop the reader's understanding of the subjects.

Nanotechnology

An Introduction to Green Nanotechnology, Volume 28, provides students, scientists and chemical engineers with an overview of several types of nanostructures, discusses the synthesis and characterization of nanostructures, and provides applications of nanotechnology in daily life. The book offers a foundation to green nanotechnology by explaining why green nanotechnology is important. Covers biological sources in green nanotechnology, antioxidants, green nanostructures, mechanism, synthesis and characterization. The book ends with an evaluation of the risks of nanotechnology in human life and future perspectives. Introduces novel sources of plants having a high potential to be used as bio media to synthesize nanostructures Provides phytochemical properties and antioxidant potential, and their effects on stability, morphology and size of green nanostructures Includes a medicinal and technological comparison of green synthesized nanostructures to nano-products from non-green methods Uses accessible language, avoiding complex concepts of mathematics, biology and chemistry

Biomaterials and Nanotechnology for Tissue Engineering

With the daunting energy challenges faced by Mankind in the 21st century, revolutionary new technologies will be the key to a clean, secure and sustainable energy future. Nanostructures often have surprising and very useful capabilities and are thus paving the way for new methodologies in almost every kind of industry. This exceptional monograph provides an overview of the subject, and presents the current state of the art with regard to different aspects of sustainable production, efficient storage and low-impact use of energy. Comprised of eighteen chapters, the book is divided in three thematic parts: Part I Sustainable Energy Production covers the main developments of nanotechnology in clean energy production and conversion, including photovoltaics, hydrogen production, thermal-electrical energy conversion and fuel cells. Part II Efficient Energy Storage is concerned with the potential use of nanomaterials in more efficient energy storage systems such as advanced batteries, supercapacitors and hydrogen storage. Part III Energy Sustainability shows how nanotechnology helps to use energy more efficiently, and the mitigation of impacts to the environment, with special emphasis on energy savings through green nanofabrication, advanced catalysis, nanostructured light-emitting and electrochromic devices and CO2 capture by nanoporous materials. An essential addition to any bookshelf, it will be invaluable to a variety of research fields including materials science, chemical engineering, solid state, surface, industrial, and physical chemistry, as this is a subject that is very interdisciplinary.

Nanotechnology in Industrial Wastewater Treatment

Textbook presenting the fundamentals of nanoscience and nanotechnology with a view to nanoelectronics. Covers the underlying physics; nanostructures, including nanoobjects; methods for growth, fabrication and characterization of nanomaterials; and nanodevices. Provides a unifying framework for the basic ideas needed to understand the recent developments in the field. Includes numerous illustrations, homework problems and a number of interactive Java applets. For advanced undergraduate and graduate students in electrical and electronic engineering, nanoscience, materials, bioengineering and chemical engineering. Instructor solutions and Java applets available from www.cambridge.org/9780521881722.

Foundations of Nanotechnology - Three Volume Set

Handbook of Nanotechnology Applications: Environment, Energy, Agriculture and Medicine presents a comprehensive overview on recent developments and prospects surrounding nanotechnology use in water/wastewater separation and purification, energy storage and conversion, agricultural and food process, and effective diagnoses and treatments in medical fields. The book includes detailed overviews of nanotechnology, including nanofiltration membrane for water/wastewater treatment, nanomedicine and nanosensor development for medical
implementation, advanced nanomaterials of different structural dimensions (0D, 1D, 2D and 3D) for energy applications, as well as food and agricultural utilization. Other sections discuss the challenges of lab-based research transitioning towards practical industrial use. Helps scientists and researchers quickly learn and understand the key role of nanotechnology in important industrial applications Takes an interdisciplinary approach, demonstrating how nanotechnology is being used in a wide range of industry sectors Outlines the role nanotechnology plays in creating safer, cheaper and more energy-efficient projects and devices

Applying Nanotechnology to the Desulfurization Process in Petroleum Engineering

Intended as a reference for basic and practical knowledge about the synthesis, characterization, and applications of nanotechnology for students, engineers, and researchers, this book focuses on the production of different types of nanomaterials and their applications, particularly synthesis of different types of nanomaterials, characterization of different types of nanomaterials, applications of different types of nanomaterials, including the nanocomposites.

Chemistry in Motion

As a paradigm for the future, micro-scale technology seeks to fuse revolutionary concepts in science and engineering and then translate it into reality. Nanotechnology is an interdisciplinary field that aims to connect what is seen with the naked eye and what is unseen on the molecular level. The Handbook of Research on Diverse Applications of Nanotechnology in Biomedicine, Chemistry, and Engineering examines the strengths and future potential of micro-scale technologies in a variety of industries. Highlighting the benefits, shortcomings, and emerging perspectives in the application of nano-scale technologies, this book is a comprehensive reference source for synthetic chemists, engineers, graduate students, and researchers with an interest in the multidisciplinary applications, as well as the ongoing research in the field.

Environmental Nanotechnology: Applications and Impacts of Nanomaterials

Nanotechnology and Functional Materials for Engineers focuses on key essentials and examples across the spectrum of nanomaterials as applied by engineers, including nanosensors, smart nanomaterials, nanoparticles, and nanotubes. Chapters cover their synthesis and characteristics, production methods, and applications, with specific sections exploring nanoelectronics and electro-optic nanotechnology, nanostructures, and nanodevices. This book is a valuable resource for interdisciplinary researchers who want to learn more about how nanomaterials are used in different types of engineering, including electrical, chemical, and biomedical. Offers in-depth information on a variety of nanomaterials and how they are used for different engineering applications Provides an overview of current research and suggests how this will impact future applications Explores how the unique properties of different nanomaterials make them particularly suitable for specific applications

Nanotechnology for Electronic Applications

Particle Level Chemical Engineering CAD brings tools to visualize and calculate where every particle settles, moves, and all the forces. Join the team learning this breakthrough technology that makes chemical engineering and nanotechnology visual and easy to build on screen.

Nanotechnology for Chemical and Biological Defense

An authoritative, in-depth exploration of the environmental consequences of nanotechnology Nanotechnology is revolutionizing the chemical, telecom, biotech, pharmaceutical, health care, aerospace, and computer industries, among others, and many exciting new nanotech applications are envisioned for the near future. While the rapid pace of innovation has been truly inspiring, much remains to be learned about the potential environmental and health risks posed by this nascent technology and its byproducts. So important is this issue that the ultimate success or
failure of nanotechnology may well depend on how effectively science and industry address these concerns in the years ahead. Written by two highly accomplished environmental professionals, Nanotechnology: Environmental Implications and Solutions brings scientists, engineers, and policymakers up to speed on the current state of knowledge in this vitally important area. Professor Theodore and Dr. Kunz provide a concise review of nano-fundamentals and explore background issues surrounding nanotechnology and its environmental impact. They then follow up with in-depth discussion of: * The control, monitoring, and reduction of nanotech byproducts and their impact on the air, water, and land * Health risks associated with nanotechnology, and methods to assess and control them * Nanotech hazard risk assessment including emergency response planning and personnel training * Multimedia approaches that are available for the analysis of the impact of nanotechnology in the chemical, manufacturing, and waste disposal industries * The future of nanotechnology and the "Industrial Revolution II" * The legal implications of nanotechnology * Societal and ethical implications of nanotechnology-based materials and processing methods. Assuming only a basic knowledge of physics, chemistry, and mathematics, Auyang uses case studies such as the development of the F-117A Nighthawk and Boeing 777 aircraft, as well as the experiences of engineer-scientists such as Oliver Heaviside, engineer-entrepreneurs such as Henry Ford and Bill Gates, and engineer-managers such as Alfred Sloan and Jack Welch to give readers a clear sense of engineering's essential role in the future of scientific research. Table of Contents: Preface 1. Introduction 2. Technology Takes Off 2.1 From Practical Art to Technology 2.2 Construction Becomes Mathematical 2.3 Experimenting with Machines 2.4 Science and Chemical Industries 2.5 Power and Communication 3. Engineering in Society 3.1 Social Ascent and Images of Engineers 3.2 Partnership in Research and Development 3.3 Computer Hardware and Software 3.4 Wireless, Satellites, and the Internet 4. Engineering in Society 4.1 Social Ascent and Images of Engineers 4.2 Partnership in Research and Development 4.3 Contributions to Sectors of the Economy 5. Innovation by Design 5.1 Inventive Thinking in Negative Feedback 5.2 Design Processes in Systems Engineering 5.3 Working Together in Aircraft Development 5.4 From Onboard Computers to Door Hinges 6. Sciences of Useful Systems 6.1 Mathematics in Engineering and Science 6.2 Information and Control Theories 6.3 Wind Tunnels and Internet Simulation 6.4 Integrative Materials Engineering 6.5 Biological Engineering Frontiers 7. Leaders Who Are Engineers 7.1 Business Leaders in the Car Industry 7.2 Public Policies and Nuclear Power 7.3 Managing Technological Risks Appendix A. Statistical Profiles of Engineers Appendix B. U.S. Research and Development Notes Index I am impressed by the scope of Engineering - An Endless Frontier, and fascinated by Sunny Auyang's comprehensive knowledge of the subject. This is just the kind of book the National Academy of Engineering has been encouraging to promote the importance of engineering to the public. It will have a long shelf-life in that it pulls together material that is not readily accessible, and will serve as a reference for anyone interested in engineering as a profession. Engineering needs this book! --John Hutchinson, Harvard University Engineering - An Endless Frontier is extraordinary in scope. Sunny Auyang describes the different kinds of contemporary engineering practices and productions, attempts to provide historical background, explains the scientific basis for engineering innovation in different fields, and addresses the broad, systems level managerial, entrepreneurial, and design activities of
professionals. It's rare to find a single author who can grasp and explain the essential features of modern technologies across such an array of industrial sectors and engineering disciplines and explain how they work, why they work the way they do, and what is required for their innovation, development and, yes, even maintenance. --Louis L. Bucciarelli, Professor Emeritus of Engineering and Technology Studies, MIT

Synthetic Engineering Materials and Nanotechnology

Nanotechnology is a vibrant research area and a growing industry. The properties of nanoparticles and nanofluids are different from those of macroparticles and macrofluids because the physical and chemical properties are very dissimilar when dimensions are at the nanometer range. The first successes in using nanofluids for cooling were achieved and commercialized for automobiles; hence, this subarea is rather profitable. Other nanotechnology research and developmental areas are cutting edge. The core scientific principles of all nanotechnology applications are based in physics, chemistry, and engineering. Nanotechnology is not taught in most programs of engineering yet, and this book on nanotechnology and energy includes a discussion of introducing nanotechnology to the curricula of engineering students. The book also introduces significant current research topics in nanoscience and nanotechnology. It is a textbook for advanced undergraduate- and graduate-level students of nanotechnology, as well as a useful reference book for researchers and professional engineers working in the fields of macromolecular science, nanotechnology, and chemistry, especially those with an interest in energy and the environment, and the automotive industry.

Nanotechnology in Paper and Wood Engineering

Nanotechnology in Paper and Wood Engineering: Fundamentals, Challenges and Applications describes recent advances made in the use of nanotechnology in the paper and pulp industry. Various types of nano-additives commonly used in the paper industry for modification of raw material to enhance final products are included, with other sections covering the imaging applications of nano-papers and nano-woods in pharmaceuticals, biocatalysis, photocatalysis and energy storage. This book is an important reference source for materials scientists and engineers who are looking to understand how nanotechnology is being used to create more efficient manufacturing processes in for the paper and wood industries. Provides information on nano-paper production and its applications Explains the major synthesis techniques and design concepts of cellulosic or wooden nanomaterials for industrial applications Assesses the major challenges of creating nanotechnology-based manufacturing systems for wood and paper engineering

Advances in Nanotechnology and the Environmental Sciences

Nanotechnology and high-end characterization techniques have highlighted the importance of the material choice for the success of tissue engineering. A paradigm shift has been seen from conventional passive materials as scaffolds to smart multi-functional materials that can mimic the complex intracellular milieu more effectively. This book presents a detailed overview of the rationale involved in the choice of materials for regeneration of different tissues and the future directions in this fascinating area of materials science with specific chapters on regulatory challenges & ethics; tissue engineered medical products.

Nanotechnology for Chemical Engineers

The book describes the basic principles of transforming nano-technology into nano-engineering with a particular focus on chemical engineering fundamentals. This book provides vital information about differences between descriptive technology and quantitative engineering for students as well as working professionals in various fields of nanotechnology. Besides chemical engineering principles, the fundamentals of nanotechnology are also covered along with detailed explanation of several specific nanoscale processes from chemical engineering point of view. This information is presented in form of practical examples and case studies that help the engineers and researchers to integrate the processes which can meet the commercial production. It is worth mentioning here that, the main challenge in nanostructure and nanodevices production is nowadays related to the economic point of view. The uniqueness of this book is a balance between important insights into the synthetic methods of nano-structures and nanomaterials and their applications with chemical engineering rules that educates the readers about nanoscale
process design, simulation, modelling and optimization. Briefly, the book takes the readers through a journey from fundamentals to frontiers of engineering of nanoscale processes and informs them about industrial perspective research challenges, opportunities and synergism in chemical Engineering and nanotechnology. Utilising this information the readers can make informed decisions on their career and business.

Colloid and Interface Chemistry for Nanotechnology

Change and motion define and constantly reshape the world around us, on scales from the molecular to the global. In particular, the subtle interplay between chemical reactions and molecular transport gives rise to an astounding richness of natural phenomena, and often manifests itself in the emergence of intricate spatial or temporal patterns. The underlying theme of this book is that by “setting chemistry in motion” in a proper way, it is not only possible to discover a variety of new phenomena, in which chemical reactions are coupled with diffusion, but also to build micro-/nanoarchitectures and systems of practical importance. Although reaction and diffusion (RD) processes are essential for the functioning of biological systems, there have been only a few examples of their application in modern micro- and nanotechnology. Part of the problem has been that RD phenomena are hard to bring under experimental control, especially when the system’s dimensions are small. Ultimately this book will guide the reader through all the aspects of these systems – from understanding the basics to practical hints and then to applications and interpretation of results. Topics covered include: An overview and outlook of both biological and man-made reaction-diffusion systems. The fundamentals and mathematics of diffusion and chemical reactions. Reaction-diffusion equations and the methods of solving them. Spatial control of reaction-diffusion at small scales. Micro- and nanofabrication by reaction-diffusion. Chemical clocks and periodic precipitation structures. Reaction-diffusion in soft materials and at solid interfaces. Microstructuring of solids using RD. Reaction-diffusion for chemical amplification and sensing. RD in three dimensions and at the nanoscale, including nanosynthesis. This book is aimed at all those who are interested in chemical processes at small scales, especially physical chemists, chemical engineers, and material scientists. The book can also be used for one-semester, graduate elective courses in chemical engineering, materials science, or chemistry classes.

Nanotechnology in Undergraduate Engineering and Science Education

Nanotechnology is the twenty-first century revolution that has impacted each and every aspect of life despite its small size. As nanoscale research continues to advance, scientists and engineers are developing new applications for many different disciplines, including environmental applications. Nanotechnology Applications in Environmental Engineering contains innovative research on nanomaterials and their impact on the environment. It also explores the current and potential future applications of nanodevices in environmental science and engineering, showcasing how nanomaterials can be tailored to address some of the environmental remediation and sensing/detection problems faced today. While highlighting topics such as environmental science, nanomaterials, and membrane technology, this book is ideally designed for environmental scientists, nanotechnologists, chemists, engineers, and individuals seeking current research on nanotechnology and its applications in environmental engineering.

Chemical Engineering

The global science and technology growth and tremendous economic development has led to increasing demand for nanomaterials and nanotechnology from all over the world as well as increasing concern for environment. The efficient and eco-friendly systems and technologies are critically needed for the further global growth and sustainable development. Multifunctional nanomaterials have unique properties. Moreover, these materials are enabling materials for a number of demanding energy efficient and eco-friendly applications in biomedical science, aerospace, power generation, pollution treatment and industry production. Significant achievements have been made worldwide in the design, development, manufacturing and application of multifunctional nanomaterial and nanotechnology in recent years and considerable innovative research and technology development is still continuing to address technical and economic challenges. This book is meant for scientists, engineers, and industry R&D personnel engaged in the development, engineering scale-up and next-generation education in academics.

Handbook of Nanotechnology Applications
Nanotechnology has the potential to revolutionize the agricultural and food industry with new tools for the molecular treatment of diseases, rapid disease detection, enhancing the ability of plants to absorb nutrients etc. Nanotechnology combines solid state physics, chemistry, electrical engineering, chemical engineering, biochemistry and biophysics, and materials science. It is a highly interdisciplinary area meaning that it involves ideas integrated from many traditional discipline. Nanotechnology (NT) is the production and use of materials with purposely engineered features close to the atomic or molecular scale. NT deals with putting things together atom by atom and with structures so small they are invisible to the naked eye. It provides the ability to create materials, devices and systems with fundamentally new functions and properties. The promise of NT is enormous. It has implications for almost every type of manufacturing process and product. Nanomaterials have extremely small size which having at least one dimension 100 nm or less. Nanomaterials can be nanoscale in one dimension (e.g. surface films), two dimensions (e.g. strands or fibres), or three dimensions (e.g. particles). They can exist in single, fused, aggregated or agglomerated forms with spherical, tubular, and irregular shapes. Common types of nanomaterials include nanotubes, dendrimers, quantum dots and fullerenes. Nanoparticle research is currently an area of intense scientific research, due to a wide variety of potential applications in biomedical, optical, and electronic fields. Nanoparticles are of great scientific interest as they are effectively a bridge between bulk materials and atomic or molecular structures. A bulk material should have constant physical properties regardless of its size, but at the nano-scale this is often not the case. This book introduces the reader to the world of nanotechnology by giving them in-depth details of different aspects of the field.

Nanotechnology for the Energy Challenge

Sustainable Nanotechnology for Environmental Remediation provides a single-source solution to researchers working in environmental, wastewater management, biological and composite nanomaterials applications. It addresses the potential environmental risks and uncertainties surrounding the use of nanomaterials for environmental remediation, giving an understanding of their impact on ecological receptors in addition to their potential benefits. Users will find comprehensive information on the application of state-of-the-art processes currently available to synthesize advanced green nanocomposite materials and biogenic nanomaterials. Other sections explore a wide range of promising approaches for green nanotechnologies and nanocomposites preparations. Case study chapters connect materials engineering and technology to the social context for a sustainable environment. Applications and different case studies provide solutions to the challenges faced by industry, thus minimizing negative social impacts. Provides information on the use of biologically mediated synthetic protocols to generate nanomaterials Discusses a wide range of promising approaches for green nanotechnologies and nanocomposites preparations Presents novel fabrication techniques for bionanocomposites, paving the way for the development of a new generation of advanced materials that can cope with spatiotemporal multi-variant environments

Nanotechnology and Energy

Innovations in Nanoscience and Nanotechnology summarizes the state of the art in nano-sized materials. The authors focus on innovation aspects and highlight potentials for future developments and applications in health care, including pharmaceutics, dentistry, and cosmetics; information and communications; energy; and chemical engineering. The chapters are written by leading researchers in nanoscience, chemistry, pharmacy, biology, chemistry, physics, engineering, medicine, and social science. The authors come from a range of backgrounds including academia, industry, and national and international laboratories around the world. This book is ideally suited for researchers and students in chemistry, physics, biology, engineering, materials science, and medicine and is a useful guide for industrialists. It aims to provide inspiration for scientists, new ideas for developers and innovators in industry, and guidelines for toxicologists. It also provides guidelines for agencies and government authorities to establish safe working conditions.

Polymer Science and Nanotechnology

Synthetic Engineering Materials and Nanotechnology covers the latest research and developments of synthetic processes, materials, applications and technologies. In addition, innovations in synthetic engineering materials techniques are analyzed. Each chapter addresses key concepts, properties and applications of important categories of synthetic materials, including metals alloys, polymers, composites, rubbers, oils and foams. Advances in nanomaterials produced by synthetic engineering methods are also considered, including ceramic, carbon, metal oxide, composite, and membrane-derived nanomaterials. The primary synthetic engineering materials techniques covered include thermo-mechanical, chemical, physiochemical, electrochemical,
Bottom-up, hybrid and biological methods. This book is suitable for early career researchers in academia and R&D in areas such as materials science and engineering, mechanical engineering and chemical engineering. Provides the fundamentals on materials produced through synthetic engineering methods, including their properties, experimental and characterization techniques, and applications. Reviews the advances of synthetic engineering methods for nanomaterials applications, including electrospinning, atomic layer deposition, ion implantation, bottom-up, hybrid strategies, and more. Includes numerous, real-world examples and case studies to apply the fundamental concepts to experiments and real-world applications.

Nano-food Engineering

Unlike extensive major reference works or handbooks, Chemical Engineering: Trends and Developments provides readers with a ready-reference to latest techniques in selected areas of chemical engineering where research is and will be focused in the future. These areas are: bioseparations; particle science and design; nanotechnology; and reaction engineering. The aim of the book is to provide academic and R&D researchers with an overview of the main areas of technical development and how these techniques can be applied. Each chapter focuses on a technique, plus a selection of applications or examples of where the technique could be applied.

Nanotechnology and Functional Materials for Engineers

Nanotechnology in Industrial Wastewater Treatment is a state of the art reference book. The book is particularly useful for wastewater technology development laboratories and organizations. All professional and academic areas connected with environmental engineering, nanotechnology based wastewater treatment and related product design are incorporated and provide an essential resource. The book describes the application and synthesis of Ca-based and magnetic nano-materials and their potential application for removal/treatment of heavy metals from wastewater. Nanotechnology in Industrial Wastewater Treatment discusses the rapid wastewater treatment methods using Ca-based nanomaterials and magnetic nanomaterials. This is an emerging area of new science and technology in wastewater treatment. The main audiences for the book are water industry professionals, research scholars and students in the area of Environmental Engineering and Nanotechnology. Authors: Dr. Arup Roy Department of Mining Engineering, Geo-Environmental Lab., Indian Institute of Technology, Kharagpur, India; and Professor Jayanta Bhattacharya, Department of Mining Engineering, Geo-Environmental Lab., Indian Institute of Technology, Kharagpur, India.

Particle Level Chemical Engineering CAD Using Arno Vigen Scrunched Cube (AVSC)

This book provides an overview of the electronic applications of nanotechnology. It presents latest research in the areas of nanotechnology applied to the fields of electronics and energy. Various topics covered in this book include nanotechnology in electronic field, electronic chips and circuits, batteries, wireless devices, energy storage, semiconductors, fuel cells, defense and military equipment, and aerospace industry. This book will be useful for engineers, researchers and industry professionals primarily in the fields of electrical engineering engineering, materials science and nanotechnology.

An Introduction to Green Nanotechnology

New and unpredicted technologies are emerging at an unprecedented pace around the world. Communication of those new discoveries is occurring faster than ever, meaning that the unique ownership of a piece of new technology is no longer a sufficient position, if not impossible. In today’s world, recognition of the potential applications of a technology and a sense of purpose in exploiting it are far more important than simply having access to it. Technological surprise has and will continue to take many forms. A plethora of new technologies are under development for peaceful means but may have unintended security consequences and will certainly require innovative countermeasures. A relevant example is the tremendous development in biotechnology that has occurred since the advent of recombinant DNA and tissue culture-based processes in the 1970s. If US government agencies and the defense and academic community had more clearly recognized the potential for biotechnology to affect mental security and warfighting doctrines 20 years ago, the situation today could be very different. Defense against chemical and biological weapons – from both states and nonstate actors – currently presents a threat that is difficult to predict and for which traditional solutions are increasingly less effective.
Nanotechnology has emerged as a well-funded discipline that, like biotechnology, carries the potential for groundbreaking applications and the potential for unpredictable harm. The world is likely 20 years away from the full impact of the nanotechnology on defensive capabilities.

Nanoscience and Nanotechnology

Colloid and interface science dealt with nanoscale objects for nearly a century before the term nanotechnology was coined. An interdisciplinary field, it bridges the macroscopic world and the small world of atoms and molecules. Colloid and Interface Chemistry for Nanotechnology is a collection of manuscripts reflecting the activities of research teams.

Handbook of Research on Diverse Applications of Nanotechnology in Biomedicine, Chemistry, and Engineering

This extensive and singular work focuses on current applications of nanotechnology in food systems. The functionality and applicability of food-related nanotechnology is covered in depth, presenting a view on the food processing, packaging, storage and safety assessment of nanotechnology in the food industry. Multiple nanostructures are covered, each with their specific ingredient choice, production strategy, functionality and application in food engineering. Individual chapters focus on current processing methods and applications of nanotechnology in foods. Nano-food Engineering Volume One brings together panels of highly accomplished experts in the field of composites, nanotechnology and chemical engineering and food technology. The work encompasses basic studies and addresses novel issues, covering all engineering aspects, opportunities and challenges and solutions of nano-foods.

Nanotechnology Applications in Environmental Engineering

Nanoscale science, engineering, and technology—commonly referred to collectively as nanotechnology—is believed by many to offer extraordinary economic and societal benefits. Nanotechnology is generally defined as the ability to create and use materials, devices, and systems with unique properties at the scale of approximately 1 to 100 nm. Nanotechnology offers society the promise of major benefits, but also raises questions of potential adverse effects. The first volume covers pore size in carbon-based nano-adsorbents, resulting in materials that exhibit unique sorptive properties with a general view of the recent activities on the study of pore structure control. The collection of topics in volume 2 reflects the diversity of recent advances in nanoelements formation and interactions in nanosystems with a broad perspective that will be useful for scientists and engineers as the use of nanotechnology in the consumer and industrial sectors is expected to increase significantly in the future. And the third volume discusses important issues and trends related to research strategy in mechanics of carbon nanotubes.

NanoScience Nanomaterial, Nanotechnology and Applications

This book focuses on the latest advances in the field of nanomaterials and their applications, and provides a comprehensive overview of the state-of-the-art of research in this rapidly developing field. The book comprises chapters exploring various aspects of nanomaterials. Given the depth and breadth of coverage, the book offers a valuable guide for researchers and students working in the area of nanomaterials.

Copyright code: 3ff836f29a25ed5de82ce926591923ce